Abstract

Abstract The process chain of die casting and hot extrusion for the fabrication of cohesively bonded aluminum bilayer billets was investigated. It represents an energy- and material-efficient link between casting and forming technologies for the production of load-adjusted lightweight constructions. Commercial aluminum AA7075 and AA6060 were initially jointed by die casting. The influence of various process parameters, such as die temperature and cooling conditions, on the interface formation was analyzed. Remelting and recrystallization processes as well as the diffusion-driven interaction between the joining partners were identified as major bonding mechanisms. As-cast bimetal billets were subsequently post-processed using hot extrusion. The present paper shows the interface evolution over the process chain of casting and massive forming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.