Abstract

Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce the heavy r-process nuclei above the atomic mass number A ~ 130 because of their ejecta consisting of almost pure neutrons (electron fraction of Y_e < 0.1). However, little production of the lighter r-process nuclei (A = 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general-relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino-processed, resulting in a wide range of Y_e (= 0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A = 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers can be the origin of the Galactic r-process nuclei. Our result also shows that the radioactive heating after ~ 1 day from the merging, giving rise to r-process-powered transient emission, is dominated by the beta-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call