Abstract

BackgroundMicrobial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals. Carbon dioxide would be an ideal carbon source for these production systems, but efficient production of long carbon chains from CO2 is difficult to achieve in a single organism. A potential solution is to employ acetogenic bacteria for the reduction of CO2 to acetate, and engineer a second organism to convert the acetate into long-chain hydrocarbons.ResultsIn this study, we demonstrate alkane production from CO2 by a system combining the acetogen Acetobacterium woodii and a non-native alkane producer Acinetobacter baylyi ADP1 engineered for alkane production. Nine synthetic two-step alkane biosynthesis pathways consisting of different aldehyde- and alkane-producing enzymes were combinatorically constructed and expressed in A. baylyi. The aldehyde-producing enzymes studied were AAR from Synechococcus elongatus, Acr1 from A. baylyi, and a putative dehydrogenase from Nevskia ramosa. The alkane-producing enzymes were ADOs from S. elongatus and Nostoc punctiforme, and CER1 from Arabidopsis thaliana. The performance of the pathways was evaluated with a twin-layer biosensor, which allowed the monitoring of both the intermediate (fatty aldehyde), and end product (alkane) formation. The highest alkane production, as indicated by the biosensor, was achieved with a pathway consisting of AAR and ADO from S. elongatus. The performance of this pathway was further improved by balancing the relative expression levels of the enzymes to limit the accumulation of the intermediate fatty aldehyde. Finally, the acetogen A. woodii was used to produce acetate from CO2 and H2, and the acetate was used for alkane production by the engineered A. baylyi, thereby leading to the net production of long-chain alkanes from CO2.ConclusionsA modular system for the production of drop-in liquid fuels from CO2 was demonstrated. Among the studied synthetic pathways, the combination of ADO and AAR from S. elongatus was found to be the most efficient in heterologous alkane production in A. baylyi. Furthermore, limiting the accumulation of the fatty aldehyde intermediate was found to be beneficial for the alkane production. Nevertheless, the alkane productivity of the system remained low, representing a major challenge for future research.

Highlights

  • Microbial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals

  • Ramo was initially identified based on its sequence homology with Acr1, and its expression was shown to increase the fatty aldehyde and wax ester production in A. baylyi [35]

  • The alkane-producing enzymes selected for the study were aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus (SeADO) and Prochlorococcus marinus (PmADO), and CER1 from Arabidopsis thaliana, all of which have been previously utilized in heterologous alkane production [15, 20]

Read more

Summary

Introduction

Microbial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals. Carbon dioxide would be an ideal carbon source for these production systems, but efficient production of long carbon chains from ­CO2 is difficult to achieve in a single organism. The challenge of alkane production from carbon dioxide can be divided in two parts: (1) the reduction of carbon dioxide to organic compounds, and (2) the conversion of these compounds to long-chain alkanes. These processes impose different, and in part contrasting, requirements for the host metabolism, and are regarded difficult to achieve efficiently in any single organism. Due to the anaerobic metabolism, the organisms employing these pathways have limited capacity for the production of highly energy-intensive molecules, such as long-chain alkanes [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call