Abstract

Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.