Abstract

Natural biomass is a renewable source for precursors of porous carbon. Four agriculture wastes of corn cob (CC), wheat bran (WB), rice husk (RH), and soybean shell (SS) were applied to produce activated carbons (ACs) via one-step activation by sodium hydroxide. The effects of ash contents and NaOH dosage ratio (1-5) on surface area for ACs were investigated. Owing to ash etching, the high ash precursor (like RH) exhibited less alkali consumption and larger surface area than low ash one (like CC). All four ACs expressed developed pore structure and outstanding surface area of ∼2500m2g-1. During adsorption of lead ions in simulated wastewater, RH-based AC revealed superior capture capacity of 492±15mgg-1. One-step activation had the potential to deliver savings around 1/3 of energy consumption, enabling the cost performance of high ash RH-based AC reaching 194±12gPb2+$-1, 76% larger than low ash CC-based AC. High ash biomass is a promising candidate to obtain eco-friendly carbon products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call