Abstract

Among matrices used for immobilizing Bacillus acidicola cells [calcium alginate, chitosan + alginate, scotch brite, and polyurethane foam (PUF)], α-amylase production was highest by PUF-immobilized cells (9.1U ml(-1)), which is higher than free cells (7.2U ml(-1)). The PUF-immobilized cells could be reused over seven cycles with sustained α-amylase production. When three variables (moisture, starch, and ammonium sulfate), which significantly affected enzyme production in solid-state fermentation (SSF), were optimized using response surface methodology, 5.6-fold enhancement in enzyme production was attained. The enzyme production in SSF is 3.8-fold higher than that in submerged fermentation. The bread made by supplementing dough with α-amylase of B. acidicola scored better than those with the xylanase of Bacillus halodurans and thermostable α-amylase of Geobacillus thermoleovorans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call