Abstract

A recombinant single-chain variable fragment (scFv) antibody to morphine-3-glucuronide (M3G) was produced using genetic material obtained from the spleen cells of mice immunised with a morphine-3-glucuronide-bovine serum albumin (M3G-BSA) conjugate. Immunoglobulin light (V L) and heavy (V H) chain genes were amplified and cloned into pAK vectors for generation of recombinant antibody fragments in Escherichia coli. A competition ELISA assay was developed in PBS to characterise the ability of the antibody fragments to recognise free drug and the detection limits were found to be as low as 3 ng ml −1. Surface plasmon resonance-based inhibition immunoassays were developed. The recombinant antibody was pre-incubated with various concentrations of free drug followed by injection over a morphine-3-glucuronide-thyroglobulin (M3G-THY) immobilised surface. The response of antibody binding to the surface of the chip was inversely proportional to the amount of free drug in solution. Regeneration conditions for antibody binding to the surface were optimised resulting in a binding-regeneration capacity of at least 30 cycles. The inhibition assay for M3G was tested with assay ranges between 3 and 195 ng ml −1 and 3 and 97 ng ml −1 in PBS and urine, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.