Abstract

A new plant milk was discovered from the seed of Adenanthera pavonina. The physicochemical and nutritional properties of the new pro-milk extract were assessed, and their biochemical effects were compared with those of soy bean extracts. Eleven groups of three albino rats each were used to assess the health benefits of the pro-milk. Groups were separately administered 3.1, 6.1, and 9.2 µl/g animal wt. pro-milk extract from A. pavonina seed, 6.1 µl/g animal wt. milk extract from soybean, and 6.1 µl/g animal wt. normal saline for 7 or 14 days. The “baseline” group consisted of those sacrificed on day 0. Among the physical properties considered, the pro-milk from A. pavonina had significantly higher (P < 0.05) hue color value and significantly lower (P < 0.05) L* than that from soy bean did. The pro-milk from A. pavonina had a significantly higher (P < 0.05) level of protein (36.14 ± 0.12%), Ca (440.99 ± 0.93 mg/l), Mg (96.69 ± 0.03 mg/l), K (190.41 ± 0.11 mg/l), Na (64.24 ± 0.24 mg/l), and Cu (0.55 ± 0.24 mg/l), and a significantly lower (P < 0.05) level of Mn (0.04 ± 0.01 mg/l) and vitamins A (undetectable), C (1.87 ± 0.01 mg/100 g), and E (0.12 ± 0.01 mg/100 g) compared to those of soy milk. The daily consumption of the pro-milk extract from A. pavonina for 14 days significantly reduced (P < 0.05) Ca2+-adenosine triphosphate synthase (Ca2+-ATPase) at low dose (3.1 µl/g animal wt.), but significantly increased (P < 0.05) Mg2+-ATPase at high dose (9.2 µl/g animal wt.). Daily administration of the A. pavonina extract for 14 days caused a significant reduction (P < 0.05) in acetylcholinesterase activity in the liver, intestine, heart, and kidney, suggesting that the pro-milk may facilitate ions transportation across the membrane. The pro-milk offers promising beneficial effects for patients with neurological diseases, as well as supporting general health owing to the high protein and mineral content. Vitamins fortification is recommended during production.

Highlights

  • Strategies, such as transforming the current underutilized and/ or poisonous plant resource to their edible forms and biotransforming the present waste to nutrients or sources of nutrients, are required to meet the nutritional needs of the increasing global population [1]

  • Minerals, and vitamins will be provided by milk and milk products

  • We examined the physicochemical, nutritional, and biochemical qualities of a pro-milk extract from A. pavonina seed to serve as a milk for human and livestock consumption

Read more

Summary

Introduction

Strategies, such as transforming the current underutilized and/ or poisonous plant resource to their edible forms and biotransforming the present waste to nutrients or sources of nutrients, are required to meet the nutritional needs of the increasing global population [1]. Different types of plant milks, including tigernut milk, peanut milk, lupin milk, cowpea milk, oat milk, rice milk, corn milk, walnut milk, sesame milk, sunflower milk, and amaranth milk, have recently been identified and classified under cereal-based, legume-based, nut-based, seed-based, and pseudo-cereal-based categories depending on their sources [10,11,12]. Nutritional drinks such as these plant milks are usually consumed by people to satisfy taste or thirst, and certain people consume it daily as a tea supplement to obtain a healthy diet [13, 14]. The consumption of nutritional drinks depends on the satisfaction of the consumer regarding the nutritional content [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call