Abstract
Standard approaches to soft-tissue reconstruction include autologous adipose tissue transplantation, but most of the transferred adipose tissue is generally reabsorbed in a short time. To overcome this problem, long lasting implantable hydrogel materials that can support tissue regeneration must be produced. The purpose of this study was to evaluate the suitability of composite 3D natural origin scaffolds for reconstructive surgery applications through in vitro tests. The Young's modulus of the glutaraldehyde crosslinked hyaluronic acid/gelatin (HA/G) plasma gels, composed of human platelet-poor plasma, gelatin and human umbilical cord hyaluronic acid, was determined as 3.5 kPa, close to that of soft tissues. The composite HA/G plasma gels had higher porosity than plain plasma gels (72.5% vs. 63.86%). Human adipose tissue derived stem cells (AD-MSCs) were isolated from human lipoaspirates and characterized with flow cytometry, and osteogenic and adipogenic differentiation. Cell proliferation assay of AD-MSCs on the HA/G plasma gels revealed the nontoxic nature of these constructs. Adipogenic differentiation was distinctly better on HA/G plasma gels than on plain plasma gels. The results showed that the HA/G plasma gel with its suitable pore size, mechanical properties and excellent cell growth and adipogenesis supporting properties can serve as a useful scaffold for adipose tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.