Abstract
The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {$10^5$} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.