Abstract

Abstract As a therapeutic treatment, recombinant human basic fibroblast growth factor (rhbFGF) is usually employed in tissue regeneration, and as an essential component in culture medium for maintaining the induced pluripotent stem (iPS) cell and embryonic stem (ES) cell in an undifferentiated state. Therefore, a large amount of biologically active rhbFGF is required. In this study, silkworm-baculovirus expression vector system (silkworm-BEVS) is employed to achieve a high productivity of recombinant rhbFGF with two small affinity tags (His-tag and STREP-tag) at the N or C-terminus. It is observed that rhbFGF with 30 K signal peptide of silkworm were successfully expressed but are not sufficiently secreted into the culture medium of cultured insect cells. Then we purified the N- or C-tagged intracellular rhbFGF protein and obtained a yield of about 0.7 mg/larva and 1.2 mg/larva, respectively. Although the final yield of the C-tagged rhbFGF is higher than that of the N-tagged, rhbFGF with N-tag demonstrated promising and comparable biological activity, which is evaluated through a mammalian cell proliferation assay. Taken together, these results indicate that silkworm-BEVS could contribute to the mass-production of the biologically active rhbFGF for medical uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.