Abstract

The major bottleneck for industrial applications of microbial flocculants is the high production cost. Here, a novel bacterium, Diaphorobacter nitroreducens R9, was isolated that can secret ligninase and cellulase and simultaneously produce bioflocculants (MBF-9) through conversion of ramie biomass. The production of MBF-9 was closely related to the ligninase and cellulase activities of D. nitroreducens. Both ligninase and cellulase showed peak activity at pH 8.5 and 6.0 and retained approximately 80% of cellulase activity and 95% of ligninase activity at pH 8.0. The optimal production conditions with the highest bioflocculant yield (3.86 g/L degumming wastewater) were determined at a fermentation time of 48 h, fermentation temperature of 30 °C, inoculum size of 4.0%, CODCr of ramie degumming wastewater of 1500 mg/L and initial pH of 8.0. In addition, MBF-9 removed 96.2% turbidity, 79.5% chemical oxygen demand (COD), 59.2% lignin, and 63.1% sugar from the pulping wastewater at an MBF-9 dosage of 831.57 mg/L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.