Abstract

Abstract Despite its insufficient availability, Copper-67 is currently attracting much attention for its enormous potential for cancer therapy as theranostic radionuclide. This work aims to accurately measure the unexplored cross section 70Zn(p,x)67Cu in the energy range 45–70 MeV and to evaluate its potential advantages in the case of high-intensity proton beams provided by compact cyclotrons. Thin target foils of enriched 70Zn were manufactured by lamination at the INFN-LNL and irradiated at the ARRONAX facility using the stacked-foils method. A radiochemical procedure for the separation of Cu, Ga and Zn contaminants and the isolation of 67Cu from the irradiated material was developed. The efficiency of the chemical processing was determined for each foil by monitoring the activity of selected tracer radionuclides (61Cu, 66Ga and 69mZn) through γ-spectrometry. Experimental data of the 70Zn(p,x)67Cu, 64Cu, 67Ga, 66Ga, 69mZn, 65Zn cross sections were measured for the first time in the energy range 45–70 MeV and compared with the theoretical results obtained by using the TALYS code. The 67Cu production yield by using enriched 70Zn thick targets was compared with the results obtained by using 68Zn targets in the same irradiation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call