Abstract

The paper presents data on the production of the $^3$He nuclide in rocks under the effect of cosmic-ray particles. The origin of the nuclide in the ground in neutron- and proton-induced spallation reactions, reactions induced by high-energy muons, and negative muon capture reactions is analyzed. The cross sections of reactions producing $^3$He and $^3$H are calculated by means of numerical simulations with the GEANT4 simulation toolkit. The production rate of the $^3$He nuclide in the ground is evaluated for the average level of solar activity at high geomagnetic latitudes and at sea level. It is proved that the production of $^3$He in near-surface ground layers by spallation reactions induced by cosmic-ray protons may be approximately 10% of the total production rate of cosmogenic $^3$He. At depths of 10-50 m.w.e., the accumulation of $^3$He is significantly contributed by reactions induced by cosmic-ray muons. Data presented in the paper make it possible to calculate the accumulation rate of $^3$He in a rock depending on depth that is necessary for the evaluation of the exposure time of the magmatic or metamorphic complex on the Earth's surface ($^3$He dating).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call