Abstract

Background2,3-Butanediol (2,3-BDO) is a valuable chemical for industrial applications. Bacteria can produce 2,3-BDO with a high productivity, though most of their classification as pathogens makes them undesirable for the industrial-scale production. Though Saccharomyces cerevisiae (GRAS microorganism) was engineered to produce 2,3-BDO efficiently in the previous studies, their 2,3-BDO productivity, yield, and titer were still uncompetitive compared to those of bacteria production. Thus, we propose an industrial polyploid S. cerevisiae as a host for efficient production of 2,3-BDO with high growth rate, rapid sugar consumption rate, and resistance to harsh conditions. Genetic manipulation tools for polyploid yeast had been limited; therefore, we engineered an industrial polyploid S. cerevisiae strain based on the CRISPR-Cas9 genome-editing system to produce 2,3-BDO instead of ethanol.ResultsEndogenous genes coding for pyruvate decarboxylase and alcohol dehydrogenase were partially disrupted to prevent declined growth rate and C2-compound limitation. A bacterial 2,3-BDO-producing pathway was also introduced in engineered polyploid S. cerevisiae. A fatal redox imbalance was controlled through the heterologous NADH oxidase from Lactococcus lactis during the 2,3-BDO production. The resulting strain (YG01_SDBN) still retained the beneficial traits as polyploid strains for the large-scale fermentation. The combination of partially disrupted PDC (pyruvate decarboxylase) and ADH (alcohol dehydrogenase) did not cause the severe growth defects typically found in all pdc- or adh-deficient yeast. The YG01_SDBN strain produced 178 g/L of 2,3-BDO from glucose with an impressive productivity (2.64 g/L h). When a cassava hydrolysate was used as a sole carbon source, this strain produced 132 g/L of 2,3-BDO with a productivity of 1.92 g/L h.ConclusionsThe microbial production of 2,3-BDO has been limited to bacteria and haploid laboratorial S. cerevisiae strains. This study suggests that an industrial polyploid S. cerevisiae (YG01_SDBN) can produce high concentration of 2,3-BDO with various advantages. Integration of metabolic engineering of the industrial yeast at the gene level with optimization of fed-batch fermentation at the process scale resulted in a remarkable achievement of 2,3-BDO production at 178 g/L of 2,3-BDO concentration and 2.64 g/L h of productivity. Furthermore, this strain could make a bioconversion of a cassava hydrolysate to 2,3-BDO with economic and environmental benefits. The engineered industrial polyploid strain could be applicable to production of biofuels and biochemicals in large-scale fermentations particularly when using modified CRISPR-Cas9 tools.

Highlights

  • The emerging platform materials of C2–C4 diol isomers have been studied for production from renewable resources

  • Instead of using a potentially pathogenic bacterial species, we suggest using Saccharomyces cerevisiae, a species listed as Generally Recognized As Safe (GRAS), to produce 2,3-BDO

  • These resulting strains of 4-PDC16d and 4-PDC56d (Table 1) were cultured in YP medium with 50 g/L of glucose to evaluate the effects of double disruption of pyruvate decarboxylase (PDC) genes

Read more

Summary

Introduction

The emerging platform materials of C2–C4 diol isomers have been studied for production from renewable resources. 2,3-butanediol (2,3-BDO) is a promising chemical with various industrial applications [1]. It is used in the production of a wide range of needed derivatives, such as softening agents, plasticizer, polyester, drugs, and cosmetics [2, 3]. 2,3-BDO can be used as a starting material for chemical conversion, especially for production of 2-butanone (commonly methyl ethyl ketone or MEK) and 1,3-butadiene. MEK considered as an effective liquid-fuel additive and 1,3-butadiene used to produce the synthetic rubber are the major building blocks in the chemical industry [4, 5]. It has been attempted that the promising platform materials can be produced in the engineered microorganism to apply large-scale fermentation. Global demand of industrial-scale production of 2,3-BDO from biomass is increasing [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.