Abstract
Δ 1-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes the oxidative cyclization of cannabigerolic acid into THCA, the acidic precursor of Δ 1-tetrahydrocannabinol. We developed a novel expression system for THCA synthase using a methylotrophic yeast Pichia pastoris as a host. Under optimized conditions, the transgenic P. pastoris secreted ∼1.32 nkat/l of THCA synthase activity, and the culture medium, from which the cells were removed, effectively synthesized THCA from cannabigerolic acid with a ∼98% conversion rate. The secreted THCA synthase was readily purified to homogeneity. Interestingly, endoglycosidase treatment afforded a deglycosylated THCA synthase with more catalytic activity than that of the glycosylated form. The non-glycosylated THCA synthase should be suitable for structure–function studies because it displayed much more activity than the previously reported native enzyme from Cannabis sativa as well as the recombinant enzyme from insect cell cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.