Abstract

Current concept, development, and testing applications in production concerning Cyber-Physical Systems (CPS), Industry 4.0 (I40), and Internet of Things (IoT) are mainly addressing fully autonomous systems, fostered by an increase in available technologies regarding distributed decision-making, sensors, and actuators for robotics systems. This is applied also to production logistics settings with a multitude of transport tasks, e.g., between warehousing or material supply stations and production locations within larger production sites as for example in the automotive industry. In most cases, mixed environments where automated systems and humans collaborate (e.g., cobots) are not in the center of analysis and development endeavors although the worker’s adoption and acceptance of new technologies are of crucial relevance. From an interdisciplinary research perspective, this constitutes an important research gap, as the future challenges for successful automated systems will rely mainly on human-computer interaction (HCI) in connection with an efficient collaboration between motivated workers, automated robotics, and transportation systems. We develop a HCI efficiency description in production logistics based on an interdisciplinary analysis consisting of three interdependent parts: (i) a production logistics literature review and process study, (ii) a computer science literature review and simulation study for an existing autonomous traffic control algorithm applicable to production logistics settings with the specific inclusion of human actors, and (iii) a work science analysis for automation settings referring to theoretical foundations and empirical findings regarding the management of workers in digital work settings. We conclude with practical implications and discuss avenues for future research and business applications.

Highlights

  • Production concepts and technology developments concerning automation, Cyber-Physical Systems (CPS), Industry 4.0 (I40), and Internet of Things (IoT) are addressing fully autonomous systems, fostered by an increase in available technologies regarding distributed decision-making, sensors, and actuators for robotics systems [1,2,3]

  • We derive a human-computer interaction (HCI) efficiency description for production logistics based on an interdisciplinary analysis consisting out of three interdependent parts: (i) a production logistics literature review and process study, (ii) a computer science literature review and simulation for an existing decentral autonomous traffic control algorithm applicable to production logistics settings with the specific adaption to HCI, and (iii) a work science analysis for automation settings referring to theoretical foundations and empirical findings regarding the management of workers in digitalized work settings

  • The specific contribution of this paper consists of the fact to establish the value of an interdisciplinary approach to HCI and HRI settings in production logistics and can be outlined as follows:

Read more

Summary

Introduction

Production concepts and technology developments concerning automation, Cyber-Physical Systems (CPS), Industry 4.0 (I40), and Internet of Things (IoT) are addressing fully autonomous systems, fostered by an increase in available technologies regarding distributed decision-making, sensors, and actuators for robotics systems [1,2,3]. Overall feasible and sustainable concepts for automated production, e.g., within production transport, will only work out if the human factor is included as for a long time to come production environments will be mixed settings of robotics and human workers [13,14,15]. For such an interdisciplinary analysis and concept development, we address the question of human intuition and its development within a digitalized production logistics setting as well as automated algorithm reaction to human actions is newly included into the analysis

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call