Abstract

Fe-based glassy powders with four different compositions of varying copper content were produced by mechanical alloying of elemental powder mixtures. The thermal stability as well as the crystallization kinetics was investigated using differential scanning calorimetry in both isochronal and isothermal modes. The isochronal and isothermal activation energies have a similar value (∼560–570 kJ/mol). In addition, the Johnson–Mehl–Avrami (JMA) analysis shows that the transformation is diffusion controlled three-dimensional process, and the crystallization proceeds with increasing nucleation rate. Metal matrix composites were synthesized through powder metallurgy methods by uniaxial hot pressing and subsequent extrusion of commercially pure Fe powders, blended with Fe-glass reinforcement. The resultant properties of the composites strongly depend on the composition of the glassy reinforcement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.