Abstract

Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed. Small antibody-like molecules, such as Fabs, are often used in certain clinical settings where small size and better tissue penetration are required. In the wake of this research trend, we developed a murine mAb (3D1) neutralizing the activity of Nodal, an oncofetal protein that is attracting an ever-increasing interest as a selective therapeutic target for several cancer types. Here, we report the preparation of a recombinant Fab of 3D1 that has been humanized through a computational approach starting from the sequence of the murine antibody. The Fab has been expressed in bacterial cells (1 mg/L bacterial culture), biochemically characterized in terms of stability and binding properties by circular dichroism and bio-layer interferometry techniques and tested in vitro on Nodal-positive cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.