Abstract

Concurrency bugs that stem from schedule-dependent branches are hard to understand and debug, because their root causes imply not only different event orderings, but also changes in the control-flow between failing and non-failing executions. We present Cortex: a system that helps exposing and understanding concurrency bugs that result from schedule-dependent branches, without relying on information from failing executions. Cortex preemptively exposes failing executions by perturbing the order of events and control-flow behavior in non-failing schedules from production runs of a program. By leveraging this information from production runs, Cortex synthesizes executions to guide the search for failing schedules. Production-guided search helps cope with the large execution search space by targeting failing executions that are similar to observed non-failing executions. Evaluation on popular benchmarks shows that Cortex is able to expose failing schedules with only a few perturbations to non-failing executions, and takes a practical amount of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.