Abstract
Abstract Felled trees with tops and branches are transported to the landing with a grapple skidder in conventional ground-based whole-tree (WT) harvesting. This method has greater potential to damage advance regeneration than those in which trees are processed at-stump. Hybrid tree-length (Hyb TL) harvesting using an stroke-boom delimber for in-woods processing might be a feasible alternative, but little is known about the production economics of this method. An experimental strip-cutting study was conducted in central Maine, US in the winter of 2018 to: (1) evaluate and compare operational productivity and costs of ground-based Hyb TL and WT methods; (2) identify factors influencing productivity of at-stump and at-landing log processing; and (3) calculate best management practice (BMP) implementation costs in WT harvesting. Time-motion data were recorded for operational phases such as felling, extraction, processing, sorting and loading; machine rates were calculated to determine productivity and costs of operations. Total cost of Hyb TL (US $17.01 m−3) was lower than that of WT ($18.38 m−3). Processing cost was lower at-stump than at-landing ($2.66 and $2.73 m−3 for Hyb TL and WT, respectively). This is likely due to fewer logs handled per cycle at-landing (1.2 logs per turn) compared to the number handled per cycle at-stump (1.4 logs per turn). Sensitivity analysis showed that a 30-m increase in average in-woods distance travelled by the delimber would result in a 41 per cent increase in the processing cost. Cost of BMP implementation in WT was $2.25 m−3 or $59.2 per productive machine hour. Results suggest that it is feasible to apply Hyb TL method in an industrial harvesting operation, though distance of in-woods delimber movement influences processing costs. Insights from this study will help forest managers and loggers efficiently plan and execute harvesting operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Forestry: An International Journal of Forest Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.