Abstract

In this study, chloridized mesoporous activated carbons (ClMAC) were prepared from used tyres. Their pore structure, surface chemistry and adsorptive capacities of toluene were investigated with nitrogen gas adsorption, Fourier transform infrared spectroscopy (FT-IR) and bench adsorptive experiments. A series of activated carbons were produced by pyrolysis, activation and chlorination under different temperatures. The activated carbons derived from scrap tyres had highly mesoporous volumes and surface areas, for example, the ClMAC prepared under 300 degrees C was 0.81 cm(3) g(-1), and 1078.2 m(2) g(-1), respectively. (Commercial activated carbon-F-400 was 0.16 cm(3) g(-1), and 1021.1 m(2) g(-1)). The adsorptive capacities of toluene in the activated carbon-derived waste tyres were compared with the F-400 and the experimental results showed chlorinated activated carbons had exceptional characteristics for toluene adsorption in an aqueous solution; especially, the ClMAC produced in 300 degrees C had a 471.8 mg g(-1) maximum capacity; however, F-400 had a 255.4 mg g(-1) minimum capacity. In short, by using chloridized mesoporous activated carbons the authors significantly improved the toluene removal capacity in aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.