Abstract

The HER-2 antigen, which is overexpressed in many breast carcinomas, is an ideal target for monoclonal antibodies due to its low expression in normal tissue and its homogeneous distribution in the tumor mass. We have developed and characterized the murine MAb MGR6 against HER-2, which is able to inhibit proliferation of tumor cells overexpressing HER-2. On the basis of these preclinical results, phase I studies in breast carcinoma patients were conducted and radiolocalization data indicated an antibody half life which directly paralleled that of other whole antibodies and thus resulting in a limited in vivo diagnostic capacity. To obtain a smaller reagent with possibly improved in vivo properties, a single chain variable fragment (scFv) of the original MGR6-producing hybridoma was generated by phage display technology. Biologically active MGR6 scFv was purified rapidly and at high yield by metal affinity chromatography. Competition FACS and ELISA analyses identified an epitope on the HER-2 extracellular domain that was shared by the scFv and the parental MAb. BlAcore analysis indicated a Koff of 9.3 x 10(-4) s(-1), similar to that of the intact MGR6 MAb. Distribution and elimination half-lives of MGR6 scFv, calculated from in vivo preclinical evaluations, were much faster (13 min and 6.2 h, respectively) than previously published results for the intact MAb (mean t1/2beta of 46 h). This represents a theoretical improvement in pharmacokinetics with respect to the parental murine MAb and points to the potential for utilizing this fragment in redirecting therapeutic agents, such as radioisotopes, to different human carcinomas overexpressing HER-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call