Abstract

Two main contrasted hypotheses have arisen during the last decades about the factors controlling the planktonic net metabolic balance in oligotrophic waters: gross primary production controls net community production vs. variability of net community production is also influenced by changes in microbial respiration. This work discusses both hypotheses analyzing the variability of metabolic rates along a gradient from the margin to the centre of the North Atlantic oligotrophic gyre, i.e. from relatively productive to more oligotrophic conditions. Net community production (NCP) was close to zero (between −3.34 and −11.77 mmol O 2 m −2 d −1) at the margin of the gyre and tended towards net heterotrophy (−44.03 mmol O 2 m −2 d −1) to the centre of the gyre as both gross primary production (GPP) and community respiration (CR) decreased. The strong relationships found between nutrient availability and both NCP and GPP suggest that factors controlling GPP are prevalent in determining NCP variability in this biogeographic region. However implementation of existing models to predict NCP from the measured GPP indicates that the precise estimation of NCP in different oligotrophic systems requires consideration of the magnitude and variability of microbial respiration rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call