Abstract

The objective of this work was to prepare different concentrations of liposomes based on lecithin containing quercetin, and evaluate their effect on the properties of galactomannan films obtained from Cassia grandis seeds. Quercetin-loaded lecithin liposomes (QT-LL) were obtained by the ethanol injection method by incorporating quercetin in different concentrations in a previously prepared suspension of lecithin liposomes in water. Following characterization of QT-LLs by zeta potential and dynamic light scattering, QT-LL with 75 µg quercetin/mL suspension was incorporated at different concentrations in galactomannan films. The films obtained were characterized for color, solubility, moisture content (MC), water vapor permeability (WVP), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The size of lecithin liposomes with no quercetin was statistically than those containing quercetin above 50 µg/mL. All the QT-LLs presented a low polydispersity index, even considering their significant differences and similar values for zeta potential. The films displayed a rough surface and the galactomannan structure was confirmed by FTIR. Additionally, the amorphous nature of the polysaccharide was observed by XRD. The films were luminous, with a predominant yellow tendency and low opacity. The incorporation of QT-LL in galactomannan films did not lead to statistical differences for solubility and MC, while significant differences were observed for WVP. Galactomannan films were shown to be a promising structure for the incorporation of lecithin liposomes loaded with quercetin, pointing at promising applications for different applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call