Abstract

Directionally reinforced B4C–TiB2 eutectic alloys were produced from green powder compacts by floating zone melting. Their mechanical properties were studied over a wide range of temperatures (25–1600°C). The high-temperature strength of the reinforced B4C–TiB2 composites hardly changes with increasing temperature and reaches about 200 MPa at 1600°C. Mechanical grinding and subsequent spark plasma sintering were used to produce reinforced B4C–TiB2 composites with an isotropic eutectic microstructure. The microstructure of the bulk-reinforced ceramic samples was examined. The developed ceramics meet the requirements imposed on high-temperature creepresistant and oxidation-resistant materials for reusable hypersonic vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.