Abstract
Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA–directed DNA methylation (RdDM) factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR) retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA–dependent RNA polymerase, RDR2 (MOP1). Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV) function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II–based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species.
Highlights
A common feature of higher eukaryote genomes is an abundance of repetitive sequences, represented primarily by retroelements and DNA transposons
We investigated the role of this specialized polymerase pathway in maintaining maize genome homeostasis with particular focus on RMR1, a novel protein related to a family of DNA repair proteins, whose function in modifying repetitive regions of the genome is unknown
We find most small RNA generation is dependent on RMR1, which appears to function downstream of the specialized polymerase, RNA polymerase IV
Summary
A common feature of higher eukaryote genomes is an abundance of repetitive sequences, represented primarily by retroelements and DNA transposons These repetitive sequences are often characterized as being heterochromatic, displaying both DNA and histone-level modifications associated with repressive chromatin environments [1]. In Arabidopsis, a model for the RdDM pathway [4] proposes that aberrant RNA transcripts are generated by the activity of the plant-specific RNA polymerase IV (Pol IV) complex. These aberrant RNAs are processed into double stranded RNA via an RNA-dependent RNA polymerase (RDR2), and cleaved into small interfering RNAs (siRNAs) approximately 24-nt in length via a Dicer-like protein, DCL3. Downstream of the recruitment of this small RNA-containing complex, protein effectors of de novo DNA methylation and histone methylation are recruited [4,7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.