Abstract

Inulin has been widely applied in food, pharmaceuticals, and many other fields because of its versatile physicochemical properties and physiological functions. Previous research showed that inulosucrase from microorganisms could produce higher-molecular-weight inulin than vegetal inulin. Herein, a food-grade recombinant Bacillus subtilis expression system was constructed to produce inulosucrase from Lactobacillus gasseri DSM 20604 without antibiotic resistance genes. The produced inulosucrase was used to biosynthesize inulin with an average molecular weight of 5.8 × 106 Da. The physicochemical properties of the produced Lactobacillus inulin were evaluated including microstructure, thermal characteristics, crystallinity, rheological behaviors, and storage stability. By comparing with vegetal inulin and other polymers, the biosynthesized microbial inulin showed some superior properties, such as better gel-forming capability and storage stability in aqueous solution than vegetal inulin. These results opened up possibilities for further investigations aimed at developing microbial inulin in the food industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.