Abstract

Graphene quantum dots (GQDs) have emerged as a promising type of functional material with distinguished properties. Although tremendous effort was devoted to the preparation of GQDs, their applications are still limited due to a lack of methods for processing GQDs from synthesis to patterning smoothly. Here, we demonstrate that aromatic molecules, e.g., anisole, can be directly converted into GQD-containing nanostructures by cryogenic electron-beam writing. Such an electron-beam irradiation product exhibits evenly red fluorescence emission under laser excitation at 473 nm, and its photoluminescence intensity can be easily tuned with the electron-beam exposure dose. Experimental characterizations on the chemical composition of the product reveal that anisole undergoes a carbonization and further graphitization process during e-beam irradiation. With conformal coating of anisole, our approach can create arbitrary fluorescent patterns on both planar and curved surfaces for concealing information or anticounterfeiting applications. This study provides a one-step method for production and patterning of GQDs, facilitating their applications in highly integrated and compact optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call