Abstract

This study aims to produce and optimize Eco-efficient self-compacting concrete (SCC) mixes using multi-waste substitutions. The main input parameters of mixes were total binder, fine aggregate and water contents whereas slump flow and compressive strength were the two main operational responses of produced concrete. Limestone powder (LP) and waste Polyethylene Terephthalate (PET) were used in concrete as parts of cement and fine aggregate respectively with high range water reducing admixture (SP) as part of water. Response Surface Methodology (RSM) and multi-objectives optimization using Minitab 17 statistical software were employed for this purpose.Twenty SCC mixes were designed and checked experimentally using Central Composite Design (CCD) concept in RSM. Mathematical models were established and evaluated using analysis of variance test (ANOVA) according to the experimental results. This is in order to define the effectiveness degree of design parameters on the properties required and to adjust the derived mathematical models. Multi-objectives optimization process was adopted to determine the optimum values of the input parameters. The optimization revealed that the optimum values of the input factors, LP, PET and SP were 20.1%, 2.4% and 1.16% by weight respectively. These theoretical values were checked experimentally and the achieved responses were quiet similar or higher than the best proposed mix.It was deduced that the developed models can be used to ensure a speedy mix design process by achieving maximum tested properties of eco-efficient SCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.