Abstract

In Particle and Nuclear Physics research and related applications, organic scintillators provide a cost-effective technology for the detection of ionising radiation. The next generation of experiments in this field is driving fundamental research and development on these materials, demanding improved light yield, radiation hardness, and fast response. Common materials such as PEN and PET have been found to offer scintillation properties competitive to commercial alternatives without the use of dopants. Motivated by their complementarity in terms of light yield, radiation hardness, and time response, there is an increasing interest in investigating PET:PEN mixtures to ascertain whether they exhibit synergistic blending. This paper presents results from the systematic development of samples of PET, PEN, and PET:PEN blends with varied mass proportions. The manufacturing technique, involving injection moulding of granule raw material, is detailed. The effects of doping the polymer base substrate with fluorescent dopants are explored. Finally, the emission spectra of the different material compositions and their relative light output are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.