Abstract

ABSTRACT For better nuclear material accountancy, we had developed a non-destructive assay system dedicated to uranium waste drums (JAWAS-N: JAEA Waste Assay System at Ningyo-toge). The system is based on a fast neutron direct interrogation (FNDI) method. To clarify the characteristics of the FNDI method and the performance of JAWAS-N, experimental and computational mock-up tests were carried out using various dry materials that contained known amounts of natural uranium. As a result, linearity between the die-away time (τ2) and the counts of fast neutrons attributed to 235U fission was confirmed. Moreover, the MCNP simulation was performed to discuss the radial and axial dependences of 235U fission probability, neutron detection efficiency, and sensitivity on uranium distributions in the drum. The simulation results agreed with the empirical results reported in a previous paper, providing valuable information on the practice of FNDI-based uranium determination. Furthermore, the nominal detection limits of natural uranium in JAWAS-N were estimated to be 15, 4, and 2 g for τ2 = 0.2, 0.3, and 0.4 msec, respectively. The findings obtained here will contribute to the implementation of the FNDI method to assess the quantities of 235U in actual uranium waste drums.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.