Abstract

X-ray spectra of K-shell hollow krypton atoms produced in single collisions with 52 - 197 MeV/u Xe54+ ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K{\alpha}_1,2^s, K{\alpha}_1,2^(h,s), and K\b{eta}_1,3^s transitions are obtained. Thus, the average number of the spectator L-vacancies presented during the x-ray emission is deduced. From the relative intensities of the K{\alpha}_1,2^s and K{\alpha}_1,2^(h,s) transitions, the ratio of K-shell hollow krypton to singly K-shell ionized atoms is determined to be 14 - 24%. In the considered collisions, the K-vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled channel calculation performed within the independent particle approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call