Abstract
In the engineering of various tissues, the scaffold material and architecture of the scaffold can affect cell seeding and tissue growth both in vitro and in vivo. This paper reports the production of three-dimensional, highly porous tissue engineering scaffolds based on Poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) biopolymers. Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a biocompatible and biodegradable polymer that can be used in tissue engineering. Hydroxyapatite (HA) is osetoconductive and is being used for bone replacement. The composite scaffolds made of these two materials have great potential for bone tissue engineering. This paper reports the fabrication and characterization of three-dimensional, highly porous HA/PHBV composite scaffolds. The scaffolds were produced using an emulsion freezing/freeze-drying technique. The structure and properties of composite scaffolds were investigated using various techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.