Abstract

The portion of the complementary DNA encoding the third intracellular loop of the rat 5-hydroxytryptamine 1A (serotonin) receptor was subcloned into the vector pGEX-KG and expressed in Escherichia coli as a fusion protein coupled with the glutathione S-transferase of Schistosoma japonicum. The fusion protein was purified on a glutathione-agarose affinity column and used to immunize rabbits for the production of polyclonal anti-5-hydroxytryptamine 1A receptor antibodies. Enzyme-linked immunosorbent assay revealed that antibodies were produced as early as one month after the first injection of the fusion protein, and immune response plateaued at a maximum after the third (monthly) booster injection. These antibodies only marginally affected the specific binding of [ 3H]8-hydroxy-2-(di- n-propyl-amino) tetralin to solubilized and membrane bound 5-hydroxytryptamine 1A receptors, and did not interfere with serotonin-induced inhibition of forskolin-stimulated adenylate cyclase negatively coupled to 5-hydroxytryptamine 1A receptors in rat hippocampal membranes. However, antibodies were able to immunoprecipitate 5-hydroxytryptamine 1A receptor binding sites solubilized from rat hippocampal membranes. The distribution of immunoautoradiographic labelling and immunohistochemical staining of rat brain sections exposed to the antibodies raised against the fusion protein superimposed to that of 5-hydroxytryptamine 1A receptor binding sites labelled by specific radioligands, with marked enrichment in the limbic areas (dentate gyrus and CA1 area in the hippocampus, lateral septum, entorhinal cortex) and the anterior raphe nuclei. The differential cellular location of immunoreactivity within the hippocampus (where dendritic fields but not pyramidal cell somas were immunostained) and the median raphe nucleus (where the plasmic membrane of somas was strongly immunoreactive) suggests that the addressing of 5-hydroxytryptamine 1A receptors might differ from one neuronal cell type to another.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.