Abstract

In this study, the lamination process on the particle board (PB) surface was carried out during the board production and the possibilities of saving wood raw material, time, labor and cost by producing the board without the need for cooling, sanding and a separate lamination process were investigated. For this purpose, ready-to-use boards were obtained by covering the board surfaces with wallpaper (WP) and beech veneer (BV) with a single hot press process. The boards were obtained by placing wallpaper and beech veneer on the surface of the chipboard draft prepared in a single layer with a thickness of 16 mm and pressing. No fine wood chips were used on the surface. 1mm thickness BV and 300 gr/m2 WP were used to cover the PB surfaces. Urea formaldehyde (UF) was treated the surface of 2 % humid wood chips (CL) according to its dry weight by 10 % and ammonium sulfate (AS) with 4 % according to solid UF. Concentration of UF and AS were 65 % and 30 % before the treated the wood chips. Particle boards were produced at 650 kg/m3, at 190°C for 10 minute, by applying 30 kg/cm2 pressure on PB. Density, water absorption (WA), thickness swelling (TS), modulus of rupture and elasticity (MOR and MOE), internal bond (IB), density profile and formaldehyde emission were determined according to the relevant TSE standards. According to the obtained results, IB strength of the coated PBs were lower than the control PB. But MOR and MOE strength were high then control samples due to BV and WP. Formaldehyde emissions of covered PBs were less than control samples. As a result, it was concluded that it is possible to produce the PB by pressing at the same time with coating materials. However, it is not currently suitable for furniture production due to its low IB strength, but it can be used as construction building material such as prefabricated house wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.