Abstract

Feather biodegradation is an important premise for efficient resource development and utilization, in which keratinase plays an important role. However, there are few keratinases that combine the high activity, thermal stability, and organic solvent tolerance required for industrialization. This paper reported an efficient feather-degrading Pseudomonas aeruginosa 4-3 isolated from slaughterhouses. After 48h of fermentation by P. aeruginosa 4-3 in a feather medium at 40°C, pH 8.0, keratinase was efficiently produced (295.28 ± 5.42 U/mL) with complete feather degradation (95.3 ± 1.5%). Moreover, the keratinase from P. aeruginosa 4-3 showed high optimal temperature (55°C), good thermal stability, wide pH tolerance, and excellent organic solvent resistance. In addition, P. aeruginosa 4-3-derived aminopeptidases also exhibit excellent thermal stability and organic solvent tolerance. Encouragingly, the reaction of crude keratinase and aminopeptidase with feathers for 8h resulted in a 78% degradation rate of feathers. These properties make P. aeruginosa 4-3 keratinase and aminopeptidase ideal proteases for potential applications in keratin degradation, as well as provide ideas for the synergistic degradation of keratin by multiple enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.