Abstract

A novel laminate system comprising of sheets of paper bound together using cellulose nanofibrils (CNF) is manufactured and characterized. Bonding properties of CNF were first confirmed through a series of peeling tests. Composite laminates were manufactured from sheets of paper bonded together using CNF at two different consistencies, press times, and press temperatures. Mechanical properties of the laminates in tension and bending were characterized and the results were statistically analyzed. Elastic modulus and strength results met or exceeded those of a short glass fiber reinforced polypropylene and various natural fiber-filled polypropylene composites as well as some wood and paper based laminates. Stiffness properties, assuming perfect bonding within the laminates, were successfully estimated through a classical laminated plate theory (CLPT) with only 2-10% variation compared to experimental results. Laminates, together with CNF-peeled surfaces, were observed and qualitatively analyzed by SEM imaging. Physical properties, namely, water absorption and thickness swelling were measured. Swelling was controlled by the addition of a small percentage of a cross-linking additive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call