Abstract

Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

Highlights

  • Keratins are classified as fibrous proteins called scleroproteins that occur abundantly in epithelial cells

  • Keratinolytic protease has been described for several species of Bacillus [30, 31] due to the broad distribution of keratinase among these genera, and this study focused on keratinolytic protease production from them

  • This paper described in details different methods that lead to the production of keratinolytic protease from two Bacillus sp. strains

Read more

Summary

Introduction

Keratins are classified as fibrous proteins called scleroproteins that occur abundantly in epithelial cells. These proteins are insoluble in water, weak acid and alkali, and organic solvents and are insensitive to the attack of common proteolytic enzymes such as trypsin or pepsin [1]. The important property of these proteins is the presence of high cystine content that differentiates keratins from other structural proteins such as collagen and elastin. Both a high cystine content as well as a high content of glycine, proline, serine, and acidic amino acids and a low content of lysine, histidine, and methionine (or their lack) as well as the absence of tryptophan are characteristic of keratins [2, 3]. The disulfide linkage and the tight secondary structure of keratins make them difficult to be hydrolysed by common proteolytic enzymes [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call