Abstract
In the present work, three different AlCoxCrFeNi (x = 1, 0.75, 0.5) alloys were produced through the mechanical milling of powders and spark plasma sintering. These alloys were characterized in terms of their microstructural, mechanical, and oxidation behaviors. Mechanical milling and spark plasma sintering were chosen to achieve a fine and homogeneous microstructure. Pore-free samples were produced by properly setting the sintering parameters. The unavoidable uptake of oxygen from the powders when exposed to air after milling was advantageously used as a source of oxides, which acted as reinforcing particles in the alloy. Oxidation behavior, studied through TGA tests, showed that decreasing the Co content promotes better oxidation protection due to the formation of a dense, compact Al2O3 layer. The alloy containing the lowest amount of Co is considered a good candidate for high-temperature structural applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.