Abstract

The end-use properties, and thus the value, of wheat flours are determined to a large extent by the proteins that make up the polymeric network called gluten. Low molecular weight glutenin subunits (LMW-GS) are important components of gluten structure. Their relative amounts and/or the presence of specific components can influence dough visco-elasticity, a property that is correlated with the end-use properties of wheat flour. For these reasons, manipulation of gluten dough strength and elasticity is important. We are pursuing this goal by transforming the bread wheat cultivar Bobwhite with a LMW-GS gene driven by its own promoter. Particle bombardment of immature embryos produced several transgenic lines, one of which over-expressed the LMW-GS transgene. Southern blots confirmed that the transgene was integrated into the wheat genome, although segregation analyses showed that its expression was sometimes poorly transmitted to progeny. We have determined that the transgene-encoded LMW-GS accumulates to very high levels in seeds of this line, and that it is incorporated into the glutenin polymer, nearly doubling its overall amount. However, SDS sedimentation test values were lower from the transgenic material compared to a non transgenic flour. These results suggest that the widely accepted correlation between the amount of the glutenin polymers and flour technological properties might not be valid, depending on the components of the polymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.