Abstract

The increasing demand for biopolymers across diverse fields, such as food, medicine, cosmetics, and environmental applications, has prompted researchers to explore novel molecules with enhanced functionalities that meet these demands. In this study, a thermophilic strain of Bacillus licheniformis was employed to produce a unique polyamino acid. This thermophilic isolate exhibited rapid growth at 50 °C in a sucrose mineral salts medium, resulting in a biopolymer concentration of 7.4 g/L. Interestingly, the biopolymer produced at different temperatures exhibited varying glass-transition temperatures (ranging from 87.86 °C to 104.11 °C) and viscosities (7.5 cP to 16.3 cP), suggesting that the fermentation temperature significantly influenced the degree of polymerization. Furthermore, the biopolymer was characterized using various techniques, including Thin Layer Chromatography (TLC), Fourier Transform Infrared (FTIR) spectroscopy, Liquid Chromatography-Electrospray Ionization-Mass Spectroscopy (LC-ESI MS), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA). The results revealed that the obtained biopolymer was a poly amino acid, with poly-γ-glutamic acid as the major monomeric component in the polymer backbone with a few appendages of aspartic acid residues in its side chain. Finally, the biopolymer demonstrated significant coagulation potential for water treatment applications, as evidenced by coagulation studies conducted under varying pH conditions using kaolin-clay as a model precipitant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call