Abstract

EGFRvIII is the type III deletion mutant form of the epidermal growth factor receptor (EGFR) with transforming activity. This tumor-specific antigen is ligand independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. In this study, we report the production and characterization of camel antibodies that are directed against the external domain of the EGFRvIII. Antibodies developed in camels are smaller (i.e. IgG2 and IgG3 subclasses lack light chains) than any other conventional mammalian antibodies. This property of camel antibodies makes them ideal tools for basic research and other applications such as tumor imaging and cancer therapy. In the present study, camel antibodies were generated by immunization of camelids (Camelus bactrianus and Camelus dromedarius) with a synthetic 14-amino acid peptide corresponding to the mutated sequence of the EGFR, tissue homogenates of several patients with human glioblastoma, medulloblastoma and aggressive breast carcinoma, as well as EGFR-expressing cell lines. Three subclasses of camel IgG [conventional (IgG1, 160 kD) and heavy chain-only antibodies (IgG2 and IgG3, 90 kD)] were separated by their different binding properties to protein A and protein G affinity columns. The anti-EGFRvIII peptide antibodies from immunized camels were purified further using the EGFRvIII synthetic peptide affinity column. The purified anti-EGFRvIII peptide camel antibodies selectively bound to the EGFRvIII peptide and affinity-purified EGFRvIII from malignant tissues and detected a protein band of 140 kD from malignant tissues by Western blot. Affinity analysis showed that the antibodies from C. bactrianus and C. dromedarius reacted with peptide and antigen purified from a small cell lung cancer ascitic fluid with affinities of 2 × 10<sup>8</sup> and 5 × 10<sup>7</sup>M<sup>–1</sup> to the same extent, respectively. Since the functional antigen-binding domain of the anti-EGFRvIII antibodies in camels is much simpler and located only on the heavy chains of proteins, we are currently developing recombinant and smaller versions of the variable domain of these naturally occurring heavy-chain antibodies (V<sub>HH</sub>) for use in tumor imaging and cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.