Abstract

Microbial milk-clotting enzymes are valued as calf rennet substitutes in the cheese industry. Aspergillus oryzae MTCC 5341 was identified to produce the highest milk-clotting activity during screening of 16 fungal strains. Solid state fermentation using wheat bran along with 4% defatted soy flour and 2% skim milk powder as substrate was optimal for growth of A. oryzae and production of the enzyme. Nearly 40,000 U/g bran of milk-clotting activity was present at the end of 120 h. The enzyme could be recovered by percolating the bran with 0.1 M sodium chloride for 60 min at 4 degrees Celsius. The decolorized enzyme preparation had high ratio of milk clotting to proteolytic activity. Affinity precipitation with alginate and subsequent elution with 0.5 M sodium chloride containing 0.2 M CaCl(2) resulted in an enzyme preparation with specific activity of 3,500 U/mg and 72% yield. Optimum pH and temperature for activity of the enzyme were characterized as 6.3 and 55 degrees Celsius, respectively. Milk-clotting enzyme showed differential degree of hydrolysis on casein components. High ratio of milk clotting to proteolytic activity coupled with low thermal stability strengthens the potential usefulness of milk-clotting enzyme of A. oryzae MTCC 5341 as a substitute for calf rennet in cheese manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call