Abstract

The production of polyhydroxyalkanoates (PHAs) through the biological conversion of methane is a promising solution to address both methane emissions and plastic waste. Type II methanotrophs naturally accumulate a representative PHA, poly(3-hydroxybutyrate) (PHB), using methane as the sole carbon source. In this study, we aimed to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV copolymer) with improved properties compared with PHB, using the type II methanotroph, Methylocystis sp. MJC1. We optimized the pH, valerate concentration, and valerate supply time in a one-step cultivation process using a gas bioreactor to enhance PHBV copolymer production yield and the 3-hydroxyvalerate (3HV) molar fraction. Under the optimal conditions, the biomass reached 21.3 g DCW/L, and PHBV copolymer accumulation accounted for 41.9 % of the dried cell weight, with a 3HV molar fraction of 28.4 %. The physicochemical properties of the purified PHBV copolymer were characterized using NMR, FTIR, TGA, DSC, and GPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.