Abstract

A recombinant strain of the protease-deficient, non-acidifying pH mutant Aspergillus niger D15 (A. niger D15 [abfB]) strain was developed to secrete α-L-arabinofuranosidase (AbfB) free of endo-1,4-β-xylanases for selective hydrolysis of xylan into hydrogels. The A. niger D15 [abfB] strain expressed the α-L-arabinofuranosidase abfB gene under the transcriptional control of the glyceraldehyde-3-phosphate dehydrogenase promoter (gpd(P)) and glucoamylase terminator (glaA(T)) in fermentation cultures containing 10 % glucose. The yield, activity, purity, kinetics and ability of the recombinant AbfB to selectively hydrolyse xylans into hydrogels were assessed. The recombinant AbfB secreted in 125-mL shake flasks and 10-L bioreactor fermentation cultures had specific activities against ρ-nitrophenyl-α-arabinofuranoside of up to 4.4 and 2.7 U g⁻¹ (dry weight), respectively. In addition, the recombinant AbfB was present as a single protein species on silver-stained 10 % sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The recombinant AbfB had optimal activity at 40-55 °C and pH 3.0 to pH 5.0 and was stable at temperature and pH of up to 60 °C and pH 6.0, respectively. About 20 % of the available arabinose in the xylan was released by the recombinant AbfB from the hydrolysis of low viscosity wheat and oat spelt arabinoxylans and about 9 and 5 % from bagasse and bamboo arabinoglucuronoxylans, respectively, that led to the formation of the hydrogels. Therefore, the constructed A. niger D15 [abfB] strain presented a microbial system for the production of recombinant AbfB with the required purity for the modification of xylans into hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call