Abstract

The concentrations of dissolved organic carbon and nitrogen (DOC and DON, respectively) were measured in Shiraho fringing reef (Japan), using a high-temperature catalytic-oxidation method. When the seawater on the reef flat (shallow lagoon) was isolated from the surrounding ocean due to the low tide, the concentrations of DOC and DON on the reef flat were 66–75 and 4.8–5.7 μmol l−1, respectively. The DOC and DON concentrations were higher than those of the adjacent outer ocean (57–58 and 3.8 μmol l−1, respectively), suggesting that the coral reef functioned as a net source of dissolved organic matter for the surrounding ocean. In order to investigate long-term bacterial decomposition of the reef-derived DOC (RF-DOC), the seawater samples collected on the reef flat and at the adjacent ocean were incubated in the dark for 1 year. Regression analysis using an exponential curve that considered two degradability pools (labile and refractory) fitted the mineralization of the RF-DOC very well (r 2 > 0.89). According to the regression analysis, the DOC produced on the reef flat was composed of the labile fraction of 63–94% (average 77%) and the refractory fraction of 6–37% (average 23%). It was concluded that some of the DOC that was produced in the coral reef ecosystem was exported to the surrounding ocean if the reef flat had a water residence time less than several months. The exported organic matter may support microbial communities in the ocean as an energy source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.