Abstract
Inspired by the spectacular successes in the field of cold atoms, there is currently great interest in cold molecules. Cooling molecules is useful for various fundamental physics studies and gives access to an exotic regime in chemistry where the wave property of the molecules becomes important. Although cooling molecules has turned out to be considerably more difficult than cooling atoms, a number of methods to produce samples of cold molecules have been demonstrated over the last few years. This paper aims to review the application of cold molecules and the methods to produce them. Emphasis is put on the deceleration of polar molecules using time-varying electric fields. The operation principle of the array of electrodes that is used to decelerate polar molecules is described in analogy with, and using terminology from, charged-particle accelerators. It is shown that, by applying an appropriately timed high voltage burst, molecules can be decelerated while the phase-space density, i.e. the number of molecules per position-velocity interval, remains constant. In this way the high density and low temperature in the moving frame of a pulsed molecular beam can be transferred to the laboratory frame. Experiments on metastable CO in states that are either repelled by or attracted to high electric fields are presented. Loading of slow molecules into traps and storage rings is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.