Abstract
New cyclic metalloporphyrin hosts, 6 and 7, have been prepared. At 0.33 mM in dichloromethane at 25 °C, they accelerate 65-fold and 840-fold respectively the reaction of diene 1 and dienophile 2 and also bind the hetero Diels−Alder product 3 very strongly. More importantly, small single crystals of solvated 6, 7, and the 6.3 complex were grown and their structures were determined. As the Diels−Alder product resembles the Diels−Alder transition state, the structures of the product-free host 6 and the 6·3 host−product complex allow, for the first time for synthetic receptors, a detailed structural analysis of the geometrical changes imposed on an accelerating agent on binding of a Diels−Alder product. Comparison of these structures reveals that when the Diels−Alder product 3 is bound within the cavity, it induces significant structural changes in 6. This provides the first crystallographic structural evidence that accelerated product formation can be accompanied by substantial host distortion. Desolvation of host and guests emerges as another factor, implying that solvent stabilization is not as significant for the host-accelerated reaction as in the control (host free) reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.