Abstract
This research presents a way of feature selection problem for classification of sentiments that use ensemble-based classifier. This includes a hybrid approach of minimum redundancy and maximum relevance (mRMR) technique and Forest Optimization Algorithm (FOA) (i.e. mRMR-FOA) based feature selection. Before applying the FOA on sentiment analysis, it has been used as feature selection technique applied on 10 different classification datasets publically available on UCI machine learning repository. The classifiers for example k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) and Naïve Bayes used the ensemble based algorithm for available datasets. The mRMR-FOA uses the Blitzer’s dataset (customer reviews on electronic products survey) to select the significant features. The classification of sentiments has noticed to improve by 12 to 18%. The evaluated results are further enhanced by the ensemble of k-NN, NB and SVM with an accuracy of 88.47% for the classification of sentiment analysis task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.